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Chapter I
SUMMARY OF REPORT

This report contains four chapters. The first chapter gives
an overall summary of the report, the remaining three chapters contain
research work performed by individual investigators in the areas of
(1) bounded state space control theory, (2) nonlinear smoothing theory,
and (3) stochastic system modelling and identification. The following

summaries give the results obtained in each area.



(1) Bounded State Space Control Theory

The most powerful tool in the study of the ordinary optimal con-
trol problem .is the Pontryagin's maximum principle. Even in the bounded
state space problem, a maximum principle is available; however, in this
case it is not as useful as in the ordinary case because of two main
reasons: The first is that the adjoint solution is not necessarily con-
tinuous, and hence it is necessary to find the jump condition at the
points where discontinuities occur; however, there are no known methods
available for determining the jump conditions. The second is that no
methods are available for determining the jump points. It is the first
difficulty with which this study is concerned. We show that at least in
linear systems the adjoint solution can be continuous, thereby eliminat-
ing the difficulty. Furthermore in certain cases, as shown in the example
in the report, this enables one to determine the times at which the response
trajectory enters or leaves the boundary of the state constraint set and

the number of switchings.

(2) Nonlinear Smoothing Theory

The problems of fixed-interval, fixed-point, and fixed-lag non-
linear smoothing are considered. Stochastic differential equations satisfied
by the fixed-interval, fixed-point, and fixed-lag smoothing probability den-
sity functions are derived. Dynamical equations are developed for the
minimum-variance fixed-interval, fixed-point, and fixed-lag smoothed es—

timates and also for their corresponding covariance matrices. By utilizing



the nonlinear results obtained in this paper, it is shown that, not only
the problems of fixed-interval, fixed-point, and fixed-lag linear smooth-
ing with observations contaminated by Gauss-Markov (correlated) noise can
immediately be solved, but also much insight of the general linear and
nénlinear smoothing problems 1is obtained.

The stability properties associated with a constant—parameter fixed-
interval linear smoothing filter are also investigated. It is shown that
the fixed-interval smoothing filter is exponentially asymptotically stable.
It is noted that the fixed-interval smoothing filter is an important filter

for data smoothing purposes.

(3) Stochastic Modeling and Identification

A particular stochastic modeling problem is solved and a method is
presented for generating a random process having a specified power spectral
density matrix using "available' laboratory white noise.

An Ito stochastic integral equation is used to mathematically nmodel

a black box having multiple inputs and multiple outputs, where, when the

black box has no inputs, the outputs have an ergodic correlation function
matrix. The stochastic integral equation model is derived from the stand-
point of measure-theoretic probability theory. Three methods of spectral
factorization are demonstrated in the process of obtaining all the matrix
parameters in the stochastic integral equation model. A numerical example
is worked to illustrate the theory of modeling a black box having only
outputs.

A new method of obtaining a realization corresponding to a given

transfer function matrix is obtained as part of the particular stochastic



modeling problem. In obtaining the new method of realizing a transfer
function matrix, a method is given for putting a linear constant coeffi-
cient differential equation with multiple differentiated inputs into

standard state variable form.
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STUDY OF BOUNDED STATE SPACE



STUDY OF BOUNDED STATE SPACE

D. H. Chyung and E. D. Eyman
Department of Electrical Engineering
University of Iowa
Iowa City, Iowa 52240

INTRODUCTION

The most powerful tool in the study of the ordinary optimal con-
trol problem is the Pontryagin's maximum principle. Even in the
bounded state space problem, a maximum principle is available; however,
in this case it 1s not as useful as in the ordinary case because of two
main reasons: The first is that the adjoint solution is not necessarily
continuous, and hence it is necessary to find the jump condition at the
points where discontinuities occur; however, there are no known methods
available for determiniﬁg the jump conditions. The second is that no
methods are available for determining the jump points. It is the first
difficulty with which this study is concerned. We show that at least in
linear systems the adjoint solution can be continuous, thereby eliminating
the difficulty. Furthermore in certain cases, as shown in the example
below, this enables one to determine the times at which the response
trajectory enters or leaves the boundary of the state constraint set

and the number of switchings.




MAXIMUM PRINCIPLE

Consider the linear system

xX(t) = A(t) x(t) + B(t) u(t)
where xeR" is an (nxl) state vector, ueR” is an (mx1) control vector,
and A(t) and B(t) are continuous matrices of compatible dimensions.
Let Q be a given convex compact control restraint set in Rm, and let
S be a given closed convex state space constraint set in R®. An admis-
sible control u(t) on [to,tll is a measurable function on [to,tll with
values in @, i.e., u(t) €@, such that the corresponding response x(t) is

in S for all t on [to,tl], i.e., x(t)es, ts[to,t Let G be a

1]'
given closed convex target set in S, and let C(u) be the cost functional

which is defined by

31

C(u) = g (x(tl) Y + S {f(x(t),t) +h(u(t),t} dt

t
(o]

where g(x) is a C1 convex function in x, f(x,t) is a Cl convex function
in x for each t, and h(u,t) is a c® convex function of u for each
t on [to,tl].

The problem is to find an admissible control function u(t) on a
given interval [to,tl] which steers the corresponding response x(t) from

a given initial point x(to) =X to the target set G at t i.e.,

1,
x(tl)eG, and minimizes the cost functional C(u). From the definition

of admissible control it follows that x(t) is in S for all te[to,tl].



Define the function £° (x) by

o _ (0 if  xeS
700 = {3x,5) if  xds

where d(x,S) = min Ix—yl, that is, d(x,S) is the usual distance between the

yeS
point x and the set S in the eucliden space R". Obviously fo(x) is a
o
continucus convex function of x in Rp, and %i'exists and 1s continuous

everywhere in R except on the boundary S of the set S. If x 1is an

o
interior point of S, then %ﬁ- = 0, for £2(x) = 0 for all xeS. Let
tl .
Co(u) = f £ (x(t) ) dt.
t
o

Then, since fo(x)_z 0, Co(u) > 0 for all measurable control function u(t)
on [to,tl]. Here x(t) is the response of the system corresponding to the
control u(t). Furthermore, since fo(x) = 0 if and only if xeS, Co(u) =0

if and only if x(t)eS almost everywhere on [to,tl]. Since x(t) is a
solution of the linear differential equation it is absolutely continuous.
Therefore, Co(u) = 0 if and only if x(t)eS for all te[to,tl], that is, u(t)
is an admissible control on [to,tl]. Since Co(u) > 0, u(t) is an admis-
sible control if and only 1if u(t) minimizes the functional Co(u) and the
minimum is zero. Let Q(to,tl) be the set of all measurable functions u(t)
on [to’t1] with their values in 2, that is, u(t)ef on [totl].

We can now rephrase our problem as follows: Find a control

* .
function.u (t) in Q(totl) which steers the corresponding response



x*(t) from the given initial point x, at t to the target set G at ti
and satisfies the following conditions:
(1) Co(u*)_i Co(u) for all measurable functions u(t) in Q
which steers the corresponding response endpoint xu(tl)
to G.
(2) C(u*) < C(u) for all measurable functions u(t) in Q

such that xu(tl) eG and Co(u) = Co(u*).
1f Co(u*) is not zero then of course an optimal control does not exist.
In other words, an optimal control always satisfies the conditions above.

| This problem has been studied by Chyung in [1]. In the paper it

(o]

was assumed that %§~ exists and is continuous everywhere in R". 1In the
o

present case this condition is not satisfied, for %§ does not exist on

9S. Therefore the results in [1] cannot be applied directly to the
present problem. However, if we let %éé (x) = n(x) on the boundary 9S

of the state constraint set S then it can be shown that the results
obtained in [1] is still valid to cover the present case. Here n(x) is

a vector function of x which is defined on 3S such that it is continuous
at x if the boundary hypersurface 3S is smooth at x and is exterior

normal to the convex set S at x on 3S. An example of such a function

n(x) is the unit exterior normal vector to S at xedS. The normal vector

.always exists, for S 1is convex. If the boundary hypersurface 9S is not

smooth at x, then it may happen that there is more than one supporting
hyperplane to S at x, and hence there is more than one exterior
normal vector to S at x with different direction, i.e., there is more

than one exterior normal unit vector to S at x. In this case, any one



of the normal vectors may be chosen for n(x). If the set S is defined
by s(x) <0, i.e., S = {xeRn| s(x)<0}, the boundary 3S is defined by

s(x) = 0, and grad s(x) exists and grad s(x) # 0 on 3S; then, obviously,
n(x) may be chosen as n(x) = grad s(x) on 3S, for grad s(x) is always
exterior normal to the set S at xe3dS.

Since n(x) is an exterior normal to S on 3S at x if the
response #(t) lies on the boundary 3S on an interval [tz,t3) with positive
measure it is clear that n(x(t) ) x(t) = 0 on [t2,t3) whenever x exists.
Combining this result with the results in [1], we then obtain the following.

First, let us consider the case when g(x) = 0, that is, the cost

functional is given by

1

C(u) =/ { £ + h} dt.
t

o
Let an admissible control u*(t).with corresponding response x*(t) be an
optimal control on [to,tl]. Let I CZ[to,tl] be the set of time t at
which x*(t) lies on the boundary 3S of the state constraint set S, 1i.e.,
I = {t[te[to,t ], x*(t)edS}. If there exists a function n(x) such that
n(x*(t) ) is integrable on I, then with respect to this particular
function n(x), there exists a nontrivial continuous (1xn) vector solu-
tion p(t) of the equation

x%(t) = A(t) x*(t) + B(t) u*(t), x*(to) =X,

() = -p(t) A(t) - p B£° (x*(t) ) - py A (x*(t) )
9x ox

- 10 -




with the endpoint conditions either x*(tl) €G, P, = constant <0, Py =
constant :py p(tl) = 0 or x*(tl)eac, P, = constant <0, P, = constant <0,
p(tl) is interior normal to G at x*(tl), such that

max

Pyh(uk(t),t) + p(t) B(t) u*(t) = o

{plh(u,t) + p(t)B(t)u}

almost everywhere on [to,tll. t1
)+ / {f + h }dt, but

t
o

1f g(x) # 0, that is, C(u) = g(x(tl)

G =R" (free endpoint), then the above result is still valid except that
the endpoint conditions should be replaced by simpler conditions

p(tl) = —prad g(x*(tl) ), poiio, pl<0.

Conversely if a measurable control u(t) in Q on [to,tll satisfies
the above maximal condition and P, # 0, P # 0, then it is an optimal

control.

CONCLUSIONS

We have derived necessary conditions and sufficient conditions for
an optimal control. It is also shown that the adjoint solution is a con-
tinuous function. This eliminates the difficulty of determining the so
called "jump conditions". However, the second difficulty, the aetermina-
tion of the points where the response either enters or leaves the

boundary 35S, still remains unsolved.

- 11 =



EXAMPLE

Consider the well-known, and the simplest, time optimal control
problem of the system %®=u. The problem is to find a control which steers
the response x(t) of the system %=u from x(0)=-2,%(0)=0 to the origin x=0,
x=0 in minimum'time with the restrictions |u]<l and Iilf}. Using vector

notation,

M 701\ [ 0 | SO\ - [-2
2 ‘( ) 2) ¥ v |2 ) = )
x 00 x 1 x~(0) 0
and the cost functional is

C(u) =ST 1dt, that is, f=1, h=0,

o

where T 41is the minimum time.

AXE
”\0‘) = (0,1)

T

/
ERY

~ (x) = (0,-1)

Let n(x) be the exterior normal unit vector to S at xedS, that is,

- 12 -



n(x) = 2
(0,-1) if x“= -1
Then
2
. ‘(0,0) 1f [x°]<1
%i(x) = 1(0,1) 1f x2 =41
(0,-1) 1f  x2 = -1

and 1f x(t) 1s on the boundary 3S, that is, xz(t) = +1, then
: 01\ (L) ,fo
n(x(t)) x(t) = (0,1) - [(0 0) (xz(t) + 1) u(t) J=4u(t)=0,

Therefore, if x(t) is on 3S then the optimal control u(t)=0, that is,
u(t)=0 1if xz(t)=¢l, except the moment when x(t) leaves the boundary 9S.

Let p(t) = (pl(t), pz(t) ). Then, rememberiig f=1,

.1 .2 1 2, /01 of°
@ 7)) = (7,p") (0 0) - Po3yx ° Pos O
Thus,
3t =0
--p1 if [x2|<1
.2 --pl -p if x2 = +1
P = 1, ° 2
-p +po if x =-1

- 13 -



Therefore,

p1 = constant

Pz(t) = -ple + c, 1f |x2(t)|<1
pz(t) = -(p1+p°)t+ C; if xz(t) =1
Pz(t) = (-p1+po)t +C, if xz(t) = -1

Notice that P, is a fixed constant throughout the entire interval [0,T].
From the maximal condition, an optimal control must satisfy the

condition, remembering h = 0,

p(t) B(t) u(t) = max p(t) B(t) u = max p2(t)u.
uf<l uj<l

Therefore

u(t) = sgn p>(t)
and u(t) = 1 or -1 unless p2=0; On the other hand u(t)=0 if x(t) is on
9S, that is, xg(t)= + 1. Thus pz(t) =0 wﬁen xz(t)=il, i.e., x(t)esds.

Now x2(0)=0. Therefore the response x(t) starts from an inner

point of 8. Now suppose the response reaches the boundary of the state

constraint set at ts that is, xz(tl) = +1, and Ixz(t)|<1 for t<t,.

Assume (arbitrarily) that xz(tl) =1, it stays on the boundary until

t2 3}t1, that is, xz(t)=1 for tl :_t<t2, and then the response leaves the

boundary at tss that is, lxz(t)|<1, for t>t,. Then on [tl,tz)

2 1
pP(t)=-(p"+p)t+C =0
and so p1+p° = 0, Cl=0, or p = -pl. Since Py <0, pl_l 0. On [O,tll;

pz(t) = —plt + Co'

- 14 ~



Since pz(t) is continuous,

1 1
-p tl + Co -(p +p°)t1+C1 = 0,
But then, since p{i 0, unless p°=p1=0,
pz(t) = —plt + C° >0

on [O,tl], and so u(t)=1 on [0,t;]. Therefore t, is the firét possible switching
time (from 1 to 0). For t > ts again since
pz(t2)=-p1cz+co=o
and p1 > 0 (unless P,=0))
pz(t) = -plt + Co <0
and so u(t) = -1, Since u(t) = sgn p2 (t), the only time a switching can
'Qccur is at the time when pz(t) = 0, But p2(t)<0 for all t>t,. Thus once
the response leaves the boundary 3S there can be no more switchings. Hence
the mayimum number of switching is two, and it occurs in the order of
l1->0->-1.

If xz(tl) = -] instead of +1, then we obtain the same result except
that the switching sequence is now -1 »+ 0 + 1.

Therefore an optimal control can have at most two switchings, and
the sequence is either 1 + 0 + -1 or -1 - 0 + 1. This important and
extremely useful result is due to that fact that p(t) is continuous and
P, is constant on the whole interval [0,T]. This result is obtained for
the first time in this report, and it cannot be obtained by any other
previous work.

Once the above fact is known the remaining derivation is easy.

The result is given below:

...15_



1
P0 =-~-1l,p =1, t

pl(t)

pz(t)

u(t) =

xl(t)

xz(t)

l=l, t

-t +1

-t + 2

2

=2, T=3,

O<t<l
1<t<2
2<t<3

0<t<1
1<t<2
2<t<3

0<t<l

1<t<2
2<t<3

0<t<1
1<t<2
2<t<3

X = -1

- 16 -
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(a) NONLINEAR SMOOTHING THEORY, WITH APPLICATIONS
TO CORRELATED NOISE‘PROCESSESx

N. K. Loh and E. D. Eyman
Department of Electrical Engineering
University of Iowa
Iowa City, Iowa 52240

ABSTRACT

The problems of fixed-interval, fixed-point, and fixed-lag nonlinear
smoothing are considered. Stochastic differential equations satisfied by
the fixed-interval, fixed-point, and fixed-lag smoothing probability den-
sity functions are derived. Dynamical equations are developed for the
minimum-variance fixed-interval, fixed-point, and fixed-lag smoothed es-
timates and also for their corresponding covariance matrices. By utiliz-
ing the nonlinear results obtained in this paper, it is shown that, not
only the problems of fixed-interval, fixed-point, and fixed-lag linear
smoothing with observations contaminated by Gauss-Markov (correlated)
noise can immediately be solved, but also much insight of the general
linear and nonlinear smoothing problems is obtained. '

I. INTRODUCTION:

The theory of linear and nonlinear filtering [1]-[3], linear and non-
linear prediction [1], [4]-[5], linear and nonlinear smoothing [4], [6]-
[7) for stochastic processes with observations contaminated by Gaussian
white-noise disturbances is well established. The generalization of the
filtering theory to processes where the observations contain Gauss-—
Markov (correlated) noise is an important problem, and was apparently
first considered by Bryson and Johansen [9] for the linear continuous-
time systems. Since the pioneering work of Bryson and Johansen, various
results in linear smoothing for correlated noise have been obtained [3],
[10].

In this paper, the problem of linear and nonlinear smoothing for
stochastic processes with observations contaminated by Gauss-Markov noise
will be considered. The following three smoothing problems will be solved,
namely (a) fixed-interval smoothing, (b) fixed-point smoothing, and (c)
fixed-lag smoothing.

II. PROBLEM STATEMENT:

Let a dynamical system be described by the following nonlinear Ito's
stochastic differential equation

dx(t)=f(x(t),t)dt+G(t)dE(t),x(0)=xo. (1.3)
The noisy observations on x(t) are obtained via a nonlinear channel,
dz(t) = a(z(t),t)dt + h(x(t),t)dt + dn(t), z(0) = z, (1.b)

In eq. (1), x(t) is the n-dimensional state vector, z(t) is the m-dim-
ensional output vector, and G(t) is an nxr matrix; f(x,t), a(z,t), and
h(x,t) are vector valued functions defined for their arguments; the initial
condition x(0) is a Gaussian random variable (vector) with mean x(0) and
covariance P(0), and is assumed to be independent of £(t) and n(t) for all

*Paper presented at the Second Annual Pittsburgh Conference on Modeling
and Simulation, University of Pittsburgh, March 29-30, 1971.
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t>0; &£(t) and n(t) arec, respectively, r-vector and m-vector zero-
mean Wiener processes with covariance matrices Q(t), R(t), and C(t)
satisfying

T t
E[f e()e(t)] = { Q(B)ar,

t
E[n()n’ ()] = f R(£)dt | (2)
E[£(t)n" (8]

t
é C(t)dr.

It will be shown in Section IV that the cross-covariance matrix C(t),

which is often assumed to be zero, is of great importance in solving

the smoothing problems when the observations contaln Gauss—-Markov

(correlated) noise.

" III. SOLUTIONS OF THE NONLINEAR SMOOTHING PROBLEM

We wish to obtain the equations of evolution of the smoothing pro-
bability density function p(x, tIZ(s)), the smoothed estimate x(t|s) and
the smoothed covariance matrix P(t[s) of x(t) defined by, for t<s,

2 3P (x (t)<x|z(s))

p(x tIZ(S) 3% 3x . 3% (3)
A 1 A n
x(t{s) =/ xp(x,t]z(s))dx (%)
Rn
P(es) 2/ [x-R(e|s)][x~%(t]s) 1 px,t]2(s))ax (5)

R

where Z(s) 4 {z(t), O<t<s}.
For s fixed, implying that the observation interval [o,s] is fixed,
i(tls) is a fixed-interval smoothed estimate of x(t) giver. Z(s); for ¢t
fixed, x(t) is an unknown constant random variable and Q(tls) is a
fixed-point smoothed estimate of x(t) conditioned on a growing record of
observed data Z(s); and for s=t+A, where A>0 is fixed implying that the
signal x(t) lags the observation z(s) by a constant A units of time,
x(t]t+x) is a fixed-lag smoothed estimate of x(t) given Z(s). This
classification for the smoothed estimates is due to Meditch [4].

The main results in this section are summarized in the following
theorems.

Theorem 1 (Fixed-Interval Smoothing):

The fixed-interval smoothing density p(x,tlz(s)) satisfies, with
respect to t for s fixed (t<s),

_ p(%,t]2(s)) - 2_§_£+Z£§22 -
dtP(X{tlZ(s))- p(x,t Z(t)) LP( atlZ(t))dt P(X tIZ(t))L [p(x t Z(t))]dt

-c——){c(c)c<t)R (t) [dz(t)-a(z(t),t)dt- h(x t)dtlp(x,tlz(s))}-

- g—t— erfc(o)c(or et (o)t (0) G )(—~) p(x t}z(s))] - (6)

pCx,tlz(sN ], = p(x,s]z(s)),

where

-~ 20 -



Lp= - (T (x, Oplr e (1) &) () )

L= £, 08 + Jurfe@ime (0 & %1 ®
-Q(E) = Q()-C(OR (et (r). (9)

Theorem 2 (Fixed-Point Smoothing):

The fixed-point smoothing density p(x,tlz(s)) satisfies, with re-
spect to s for t fixed (t<s),

dsp(x,tIZ(S))¥p(x,tIZ(S))[ﬁ(sls)-ﬁ(SIS)]TRnl(S)[dZ(s)-a(Z(S),S)ds—ﬁ(SIS)dS]

PG, t|z(s)) | _ = p(x,tfz(t)), (10)
where .
h(s|s) = /_ h(y,s)p(y,s|2(s))dy (11)
R
h(sls) = J_ h(y,s)p(y,s|x(t)=x;Z(s))dy. (12)
R

Theorem 3 (Fixed-lag Smoothing):

The fixed-lag smoothing density p(x,tlZ(s)) satisfies with respect to
t for s=t+), where x>0 is fixed, '

_ p(x,t]|z(s)) % p(x,t]|Z(s))
dtp(x,tIZ(S))— Pt |Z(0) Lp(x,t|2(t))dt-p(x,t|Z(t))L [£?§TE+ETEYT]dt'

- e (R () [dz(0)-a(z(t) , ) de-h(x, £)delp (x, £ 2 (s)) }-

- 28 erie(e)c (R M) (06T (1) &) A Tptx,t|z(s))] +

+p(x,:|2(s))[E<s|s)-ﬁ(s|s)]TR'1(s)[dz(s)-a(z(s),s)ds-ﬁ(sls)ds]
pix,t|2(s)) | . = p(x,,0[Z(0),

s=A
where ﬁ(s]s) and E(s]s) are as defined in eqs.(11l) and (12).

The equations of evolution of the smoothed estimates ﬁ(tls) and the
smoothed covariance matrices P(tls) are omitted due to the lack of space.
These equations can be obtained by utilizing eqs. (6)-(13), together with
an application of Ito's Lemma.

(13)

IV, APPLICATIONS TO CORRELATED NOISE PROCESSES

We shall consider linear systems described by the following vector
stochastic differgntial equation,
dx(t) = F(t)x(t)dt + G(t)dg(t)

x(0) = X s stn, EeRr, (14)

with noisy observations obtained via a linear chanmel,

z(t) = M(t) x(t) + v(t), (z,v)eR" (15)
where v(t) is the Gauss-Markov (correlated) noise satisfying,

dv(t) = A(t)v(t) + B(t) da(t)

v(0) = v veRp, aeRP, (16)

- 21 -



T t
Ela(t)a (t)]= J N(t)dr
4 (17)

E[E(E)al (t) ]= [ s(t)dr.

Equations (14)-(17) constitute the problem of linear smoothing for
correlated noise. The various smoothed estimates x(tls) and covariance
matrices P(tls) will be obtained by using the results presented in
Theorems 1-3 in Section III.

Now by applying Ito's Lemma to eq.(15) and utilizing eqs.(14) and
(16), we obtain the following stochastic differential equation satisfied

by z(t)

dz(£)=A(t)z(t)dt + H(t)x(t)dt + dn(t) (18)
where z(O)—M(O)x(O) + v(0),
H(t)— M(t) + M(t)F(t) -A(EIM(L), (19)
dn(t)= M(t)G(t)dE(t) + B(t) da(t), (20)
t
E(n(n" ()] = f R(x)dr, (21)
£° :

]

E[E(t)n (0] = C(r)dr, (22)

R(t) = M(t)G(t)Q(t)G (t)M (t) + B(t)N(t)B (t) +
(23)

+M(t)G(t)S(t)B () + B(t)S (t)G (t)M (v,
ct) 2 ooyt (omTe) + syt (). (24)

Utilizing eqs.(14) and (18), and Theorems 1-3, we can now summarize
the main results for linear smoothing with observations "contaminated by
Gauss-Markov (correlated) noise in the following theorems.

Theorem 4 Fixed-Interval Smoothing:

The fixed-interval smoothing density p(x,tlZ(s), fixed-interval
smoothed estimate X(tls), and fixed-interval smoothed covariance P(tls)
of x(t) given Z(s) satisfy, respectively, with respect to t for s
fixed (t<s),

d p(x, t|z(s))= —63—)T{[F(t)+G(t)6(t)GT(t)P'1(tIt)]xp(x,t|2(s))}dt—

- —~tr[G(t)Q(t)G (t)( )G—-) o (x, t]z(s)1-

p(x, £]2(s)) [x-% (] 8) 1P L (£ )G (0)A(E)GT ()P~ (e | )R (] £)d -

» T -

- RRGLELZE),) ¢ heor i [z am(nacl, (25)
dtﬁ(tls) = F(t) ﬁ(c|s)dc+c(c)6(t)cT(t)p'l(t|t) (&(t]|s)-x(t|t)] dt+

+G(E)C(OR™I(E) [dz(e)-A(e)z(r)dt], (26)
dP€£l§~ [F(t) +c(t)6(t)cT(c)P'1(tlt)l P(t|s)+

#(ele) [F0) + c(0oc P e |g’- cmawet e, (27)
where

F(t) 4 F(t) - G(t)C(t)R (t) H(t) (28)
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Q(t) is as given by eq.(9), and the boundary conditions for (25), (26)
and (27) are, respectively, the filtered density p(x,sIZ(s)), filtered
estimate x(s‘s), and filtered covariance P(s|s):

P(xatlz(s))|t=s = p(x,le(s)) '

i(:ls)lt=s = x(s|s) (29)
P(tls)lt=S = P(s|s).

It should be noted that eqs.(26)and(27) have been obtained in a

recent paper by Fujita and Fukao [11]. However, our approach here is
different from that in [11].

Theorem 5 (Fixed-Point Smoothing):

The fixed-point smoothing density p(x,tIZ(s)), fixed-point
smoothed estimate x(tls), and fixed-point smoothed covariance P(t|s) of
x(t) given Z(s) satisfy, respectively, with respect to s for ¢t fixed
(t<s),

- A T T -1
d_p(x,t]2(s)) = p(x,t|2(s)) [x(s|s)-x(s|s)1 H (IR “(s)*
' *{dz(s)-A(s)z(s)ds-H(s)%(s|s)ds]

pC,t]z(sN |, = p(x,t]z(e)), (30)

d_%(t]s)=P(t]|t)¥" (s, )0 ()R " () [dz(s)-A(s) z(s)ds-H(s) R (s s)ds]

x(t|s) lo=e = X(t]0), (31)

93%5151 = —p(t|)¥ (s, )BT ()R L () H(s) ¥(s, )P (] )

P(t]s) [, =P(t]t), ' (32)

WReTR(s]s) = £, yp(yasln(e) = x5 2())dy, (33)
R .

and Y(s,t) is the transition matrix associated with
T -1

[F(s) - P(s|s)H (s)R ~(s)H(s)].

Theorem 6 (Fixed-Lag Smoothing):

The fixed-lag smoothing density p(x,tIZ(s)), fixed-lag smoothed
estimate ﬁ(t[s), and fixed-lag smoothed covariance P(t|s) of x(t) given
Z(s) satisfy, respectively, with respect to t for s=t+), where A>0Q
is fixed,

d,p(x,t[2(8))= -G {[F(+6()TOE (P (e]0) Ixp (x, t]Z(s) ) de-
- $8 e eame () &) Ao elz))]-

—pGxotz(e)) Ix-x(t )17 P (e|8) G ()T E)ET () 6T ()P (e | €)% (e | £) de-

T
—[aP‘xgilz‘S)’l G(E)C(E)R T (e) [dz(t)-A(t)z(t)de]+

T
+p(x,t|2(s)) [x(s]s)-%(s]|s)] HT(s)Rfl(s)[dz(s)-A(s)z(s)ds—H(s)i(s]s)ds]
p(x,t|2(s)) | o =p(x,0[Z(0), (34)
s=A
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a.x(c|)=F(DR(t[s)dat + G(OAIET ()P (e]e) [R(e[s)-R(t]t)]de +

+G(E)C(E)R L (L) [dz(t)-A(t)z(t)de] +

+P(t]t) ¥ (s, t)H ()R L (s) [dz(s)~A(s)z(s)ds-H(s)% (s |s)ds] (35)
x(t]s) | o = XO|N), ' |
s=A

dP(;ls) = [F(t) + (AT (P (e [e)] P(e]s) +
+P(t|s) [f(t)+G(t)§(t)GT(t)P“1(t]t)]_G(t)a(t)GT(t)

-p(t| ) ¥ (s, 0)HT ()R (s)H(s) ¥ (s, B (L ]t)
P(tls) | _o=PO[N),

s=A
where F(t) and Q(t) are as given in eqs.(28) and (9), and ¥(s,t) is
the transition matrix associated with [F(s)-P(sls) HT(s)R-l(s)H(s)].

(36)

REMARKS ¢

It is obvious from eq.(22) and Theorem 4 and 6 that the nxm matrix
C(t) plays an important role in linear fixed-interval and fixed-lag
smoothing when the observations are contaminated by Gauss-Markov
(correlated) noise. The matrix C(t) was a cross-covariance matrix in
eq.(2) and Theorems 1 and 3; however, it is not entirely a cross-
covariance matrix in eq.(22). The results in Theorems 1 and 3 may
not be used to solve the problems of linear fixed-interval and fixed-
lag smoothing for correlated noise if C(t) had been assumed zero in

eq. (2).
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(b) ON THE STABILITY OF FIXED-INTERVAL LINEAR
SMOOTHING, WITH APPLICATION TO COLORED NOISE

N.K. Loh, and E.D. Eyman
Department of Electrical Engineering
University of Iowa
Iowa City, Iowa 52240

ABSTRACT

-

The stability properties associated with a constant-parameter

fixed-interval linear smoothing filter are investigated. It is shown
that the fixed-interval smoothing filter is exponentially asymptotically
stable. It is noted that the fixed-interval smpothing filter is an

important filter for data smoothing purposes.
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I. INTRODUCTION

The stability properties associated with the Kalman-Bucy filter are

well known[l]. The stability properties associated with the constant-

parameter fixed-interval linear smoothing filter will be presented here.
The stability of a filter is of utmost importance because without it,

the estimate generated by the filter is uselesq. It is noted that the

fixed-dnterval smoothing filter is an important filter for data smooth-

ing purposes.

The linear time-invariant system is assumed to be modelled by the

following differential equation

x(t) = Fx(t) + GE(t)

(1.a)
x(0) = X, ~ N[xo’Px(o)]’
with noisy observations via a linear channel,
z(t) = Az(t) + Hx(t) + n(t)
- (1.b)
z(0) = z - N[zo,Pz(O)].
In (1), x, 2, £, and n are n, m, r, and m vectors, respectively; F, G,
A, and H are constant matrices with appropriate dimensions; N[?,Py] denotes
a normal distribution with mean ¥ and constant covariance Py; and E(t)
and n(t) are zero-mean Gaussian white-noise sources with covariances
T
Efe(t)E (1)] = Q 8(t-1)
T
E[n(t)n (1)) = R &§(t-1) (2)

E[E(t)n (1)] = C §(t-1).

n-




The initial conditions x(0) and z(0) are assumed to be independent of

£(t) and n(t) for all t > 0. It is also assumed thatl Q>0,R>0,

and (Q - CR™cT) >0.

I1. STABILITY OF FIXED-INTERVAL SMOOTHING

Given the observations Z(T) £ {z(1), 0 < 1 < T} on the fixed
interval [0,T], it can be shown [2] [3] that the fixed-interval smoothed

estimate x(t|T) = E[x(t)|Z(T)] of x(t) satisfies with respect to t, for

t <T,

43t = freelm + @G| D - 2] +

+ GCR L[2(t) - Az(t)]

(3)

x(tlT)lt-T= x(T|T),
where

Flr- 'l

&t & a(q - crichHet > o.

The estimate ﬁ(tlt) is the Kalman-Bucy filtered estimate of x(t) given
Z(t) 4 {z(1t), 0 < t <t} [1]; 1 is the constant covariance matrix
associated with ﬁ(tlt), and n_l satisfies,

1%+ #7L  rleeT Tt - wTr 7 = o. %)

1 A>B (A > B) means A-B is positive definite (positive semidefinite).
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As 1is evident from the terminal condition i(TIT), equation (3)
is to be integrated backward in time fromt = T tot = 0, It 1is
convenient to set 8 = T - t, so that (3) may be written as, in terms of

the backward-time wvariable ﬁB(s),

x(8) = ~(F + 81 % () + &Tr (18 |1-8) -
-1 .. (5)
e L [2(1-8) - Az(T-8)]

x3(0) = %(T(T).

The stability result on (5), and therefore on (3), is given in

the following theorem.

Theorem: Suppose the pair (F,G) is completely controllable, and the

pair (ﬁ,ﬁ) is completely observable, where ﬁT

H A HTRfIH. Then thg fixed~-
interval smoothing filter (5) is exponentially asymptotically stable,

i.e., there exist positive constants kl and k, such that IIQD(tz,tl)Iljklo
exp[—(tz-tl)kzl, where ¢D(t2,tl) is tha transition matrix associated with

A -1

p & 7+ &&T

I

Remark: The complete controllability and complete observability assumptions

also guarantee the exponential asymptotic stability of the constant-parameter

Kalman-Bucy filter, and the position definiteness of I and H-l [1].
Proof of Theorem: Consider the homogenous part of (5),
y(8) = -(F + 817 y(e), (6)
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and the Lyapunov function,
T -1
V(y) =y (s)n “y(s). (N

From (4), (6) and (7), it follows that,

T -1 , AT

. T N —lAA - A
V(y) = =y (8)In "GG'n ~ + H'H] y(s) (8)
so that V(y) is nonpositive, but not necessarily negative definite.
However, if ﬁ(y) does not vanish identically along any nonzero trajectory
determined by (6), then exponential asymptotic stability follows [4].

Now assume that \7(y) = 0 but y(0) ¥ 0. From (8), éli'[-ly(s) =0

and ﬁy(s) = 0, and so from (6),

y(s) = -Fy(s). (9
Equation (9) yields y(s) = Qﬁ(o,s) ka), gso that

Hy(s) = fi24(0,8) y(0) = 0. (10)
Since (ﬁ,ﬁ) is completely observable, the n columns of ﬁ¢§(0,') are
linearly independent on [0,T]; therefore (10) fimplies that y(0) = 0

which contradicts the assumption that y(0) ¥ 0. Hence (6) and therefore

(5) are exponentially asymptotically stable.
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III. APPLICATION TO COLORED OBSERVATION NOISE

The result of the stability theorem in the previous section can
be applied to fixed-interval smoothing where the observations contain
colored or time-correlated noise processes.

Consider (la) with observations given by

z(t) = Mx(t) + v(t). (11)

The process {v(t)} is the colored or time-correlated noise determined

by,

v(t) = Av(t) + Ba(t)

- (12)
v(0) = v  ~ N[v , P (0)],
where a(t) is a k-vector zero-mean Gaussian white-noise source with
covariance E[a(t)aT(T)] = R16(t-1) and E[E(t)aT(T)] = Clé(t-r). It 1is
assumed that v(0) and a(t) are independent for all t > 0. It can be shown
that the correlation matrix K(tz’tl) £ E[v(tz)vT(tl)] is given by, for all
t, 2 ty,
K(tZ’tl) = QA(tZ’tl) K (tl’tl)
T
= 9,(t,,ty) [9,(t;,0) K (0,0)2,(t;,0) + (13)

‘1 T T
g @A(tl,T)BRlB ¢A(t1,r) dt],
where K(0,0) = PV(O) - ;o;oT’ A block diagram of the system is shown in

Fig. 1.
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Now from (la), (11) and (12), it follows that,

z(t) = Az(t) + Hx(t) + n(t), (14)
where
He&MF-aAM (15)
n(t) £ MeE(t) + Ba(t) (16)
E[n(t)n (x)] = [MeqQe M+ BRIBT + MGClBT + BC{GTM:] 5 (t~1)
17)
8 RS (t-1)
E((0nT(1)] = [o6™M' + ¢ B] 6(t-1)
. (18)
£ ¢ 5(t-1)

As before, it is assumed that R > 0 and (Q - CRfICT) > 0.
Equations (la) and (14) constitute a standard form for the smoothing
problem. The fixed-interval smoothing filter eguation in the present case

has exactly the same form as (3) or (5), i.e.,

xy(8) = - (F + &Y x,0e) + GeT L (1-8 | T-8) -

GCR L[5 (T-8) - Az(T-8)], (19)

where the H, R, and C matrices are, however, now given by (15), (17), and

(18), respectively.

AN



By the stability theorem in the previous section, it follows
that if (ﬁ,&) is completely controllable and (ﬁ,ﬁ) is completely
observable, where ﬁwéﬁf —CRle, ééT 4 G(Q —CR-lCT)GT, and ﬁTﬁ 4 HTR_1H,
then ;he fixed-interval smoothing filter (19) is expoﬁéntially asymptoti~-
cally stable. It should be noted that in (5), the matrix C 18 a cross-
covariance matrix between the system noise Z(t) and the observation noise
n(t); however, in (19) C 1is not just a cross-covariance matrix as is
evident from (18). Hence, the matrix C 1is of theoretical significance
as the results in the previous section can be applied to the fixed-

interval smoothing problem in which the observations contain colored noise

only when C # 0 in (3) or (5).
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Chapter IV

STOCHASTIC MODELLING AND IDENTIFICATION
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STOCHASTIC MODELING AND IDENTIFICATION

E.D. Eyman and T.H. Kerr
Department of Electrical Engineering
University of Iowa
Iowa City, Iowa 52240

ABSTRACT

A particular stochastic modeling problem is solved and a method
is presented for generating a random process having a specified power
spectral density matrix using "available' laboratory white noise W(t)[ll.
("Available'" means that between W(t) and W(t+t) there is a fixed correla-
tion for all t; fixed correlations would be encountered in using the
congruence method of generating pseudo-random numbers by computer.)

An Ito stochastic integral equation is used to mathematically
model a black box having multiple inputs and multiple outputs, where,
when the black box has no inputs, the outputs have an ergodic correlation
function matrix. The stochastic integral equation model is derived from
the standpoint of measure-theoretic probability theory. Three methods of
spectral factorization are demonstrated in the process of obtaining all the
matrix parameters in the stochastic integral equation model. A numerical
example is worked to illustrate the theory of modeling a black box having
only outputs.

A new method for obtaining a realization corresponding to a given

transfer function matrix is obtained as part of the particular stochastic
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modeling problem. In obtaining the new method of realizing a transfer
function matrix, a method is given for putting a linear constant

coefficient differential equation with multiple differentiated inputs

into standard state variable form.
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